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Abstract

In this paper, we show the relationship between two algorithms and optimization problems
that are the subject of recent attention in the networking and control literature. First, we
obtain some results on averaging algorithms over acyclic digraphs with fixed and controlled-
switching topology. Second, we discuss continuous and discrete coverage control laws. Further,
we show how discrete coverage control laws can be cast as averaging algorithms defined over an
appropriate graph that we term the discrete Voronoi graph.

1 Introduction

Consensus and coverage control are two distinct problems within the recent literature on multiagent
coordination and cooperative robotics. Roughly speaking, the objective of the consensus problem is
to analyze and design scalable distributed control laws to drive the groups of agents to agree upon
certain quantities of interest. On the other hand, the objective of the coverage control problem is
to deploy the agents to get optimal sensing performance of an environment of interest.

In the literature, many researchers have used averaging algorithms to solve consensus problems.
The spirit of averaging algorithms is to let the state of each agent evolve according to the (weighted)
average of the state of its neighbors. Averaging algorithms has been studied both in continuous
time [2, 3, 4, 5] and in discrete time [6, 5, 7, 8, 9, 10, 11, 12]. In [2], averaging algorithms are
investigated via graph Laplacians [13] under a variety of assumptions, including fixed and switching
communication topologies, time delays, and directed and undirected information flow. In [3], a series
of consensus protocols are presented, based on the regular averaging algorithms, to drive the agents
to agree upon the value of the power mean. A theoretical explanation for the consensus behavior
of the Vicsek model [14] is provided in [7], see also the early work in [6], while [5] extends the
results of [7] to the case of directed topology for both continuous and discrete update schemes. The
work [8] adopts a set-valued Lyapunov approach to analyze the convergence properties of averaging
algorithms, which is generalized in [9] to the case of time delays. Asynchronous averaging algorithms
are studied in [10]. The work [11] analyzes the averaging algorithms in the framework of partial
difference equations over graphs [15]. The works [16, 17] survey the results available for consensus
problems using averaging algorithms. In the scenario of coverage control, [18] proposes gradient
descent algorithms for optimal coverage, and [19] presents coverage control algorithms for groups
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of mobile sensors with limited-range interactions. Also, we want to point out that a special kind of
directed graphs, namely acyclic digraphs, are presented in the literature to describe the interactions
of agents in leader-following formation problems, e.g., [20, 21, 22].

The contributions of this paper are (i) the investigation of the properties of averaging algorithms
over acyclic digraphs with fixed and controlled-switching topologies, and (ii) the establishment of
the connection between discrete coverage problems and averaging algorithms over acyclic digraphs.
Regarding (i), our first contribution is a novel matrix representation of the disagreement function
associated with a directed graph. Secondly, we prove that averaging over an fixed acyclic graph
drives the agents to an equilibrium determined by the so-called “sinks” of the graph. Finally, we
show that averaging over controlled-switching acyclic digraphs also makes the agents converge to
the set of equilibria under suitable state-dependent switching signals. Regarding (ii), we present
multicenter locational optimization functions in continuous and discrete settings, and discuss dis-
tributed coverage control algorithms that optimize them. We discuss how consistent discretizations
of continuous coverage problems yield discrete coverage problems. Finally, we show how discrete
coverage control laws over the discrete Voronoi graph can be casted and analyzed as averaging
algorithms over a set of controlled-switching acyclic digraphs. Various simulations illustrate the
results.

The paper is organized as follows. Section 2 introduces our novel matrix representation of the
disagreement function, and then reviews the current results on consensus problems. We also present
convergence results of averaging algorithms over acyclic digraphs with both fixed and controlled-
switching topologies. Section 3 presents locational optimization functions in both continuous and
discrete settings, and then discusses appropriate coverage control laws. The main result of the paper
shows the relationship between averaging over switching acyclic digraphs and discrete coverage.
Various simulations illustrate this result, and show the consistent parallelism between the continuous
and the discrete settings. Finally, we gather our conclusions in Section 4. For easy reference, we
review some basic facts and standard notations from nonsmooth analysis.

Notation

We let N, R+ and R+ denote, respectively, the set of natural numbers, the set of positive reals,

and the set of non-negative reals. For any set S ⊆ R
2, we let

◦
S, and ∂S denote, respectively, the

interior, and boundary of S. The quadratic form associated with a symmetric matrix B ∈ R
n×n

is the function defined by x 7→ xT Bx. The map f : X → Y and the set-valued map f : X ⇒ Y
associate to a point in X a point in Y and a subset of Y , respectively. The sum of m subsets
Si, i ∈ {1, . . . , m} in a vector space, denoted by

∑m
i=1 Si, consists of all vectors of the form

∑m
i=1 si,

where si ∈ Si, for i ∈ {1, . . . , m}.

2 Averaging algorithms over digraphs

2.1 Preliminaries on digraphs and disagreement functions

A weighted directed graph, in short digraph, G = (U , E ,A) of order n consists of a vertex set U
with n elements, an edge set E ∈ 2U×U (recall that 2U is the collection of subsets of U), and a
weighted adjacency matrix A with nonnegative entries aij , i, j ∈ {1, . . . , n}. For simplicity, we take
U = {1, . . . , n}. For i, j ∈ {1, . . . , n}, the entry aij is positive if and only if the pair (i, j) is an edge
of G, i.e., aij > 0 ⇔ (i, j) ∈ E . We also assume aii = 0 for all i ∈ {1, . . . , n} and aij = 0 if (i, j) 6∈ E ,
for all i, j ∈ {1, . . . , n} and i 6= j. When convenient, we will refer to the adjacency matrix of G by
A(G).

Let us now review some basic connectivity notions for digraphs. A directed path in a digraph is
an ordered sequence of vertices such that any two consecutive vertices in the sequence are an edge
of the digraph. A cycle is a non-trivial directed path that starts and ends at the same vertex. A
digraph is acyclic if it contains no directed cycles. A node of a digraph is globally reachable if it

2



can be reached from any other node by traversing a directed path. A digraph is strongly connected
if every node is globally reachable.

Remark 2.1. The previous definition of adjacency matrix follows the convention adopted in [2],
where aij > 0 ⇔ (i, j) ∈ E. On the other hand, in [16], aij > 0 ⇔ (j, i) ∈ E. This difference arises
from a different meaning of the direction of an edge. In [2], a directed edge (i, j) ∈ E means node i
can ’see’ node j, i.e., node i can obtain, in some way, information from node j. We refer to this
as the communication interpretation. In [16], a directed edge (i, j) ∈ E means that the information
of node i can flow to node j. We refer to this as the sensing interpretation. The difference leads
to different statements of various results. For example, having a globally reachable node in the
communication interpretation is equivalent to having a spanning tree in the sensing interpretation.
•

The out-degree and the in-degree of node i are defined by, respectively,

dout(i) =
n∑

j=1

aij , din(i) =
n∑

j=1

aji.

The out-degree matrix Dout(G) and the in-degree matrix Din(G) are the diagonal matrices defined by
(Dout(G))ii = dout(i) and (Din(G))ii = din(i), respectively. The digraph G is balanced if Dout(G) =
Din(G). The graph Laplacian of the digraph G is

L(G) = Dout(G) −A(G),

or, in components,

lij(G) =





n∑

k=1,k 6=i

aik, j = i,

−aij , j 6= i.

Next, we define reverse and mirror digraphs. Let Ẽ be the set of reverse edges of G obtained by
reversing the order of all the pairs in E . The reverse digraph of G, denoted G̃, is (U , Ẽ , Ã), where
Ã = AT . The mirror digraph of G, denoted Ĝ, is (U , Ê , Â), where Ê = E ∪ Ẽ and Â = (A + AT )/2.
Note that L(G̃) = Dout(G̃) −A(G̃) = Din(G) −A(G)T .

Given a digraph G of order n, the disagreement function ΦG : R
n → R is defined by

ΦG(x) =
1

2

n∑

i,j=1

aij(xj − xi)
2. (1)

To the best of the authors’ knowledge, the following is a novel result.

Proposition 2.2 (Matrix representation of disagreement). Given a digraph G of order n, the
disagreement function ΦG : R

n → R is the quadratic form associated with the symmetric positive-
semidefinite matrix

P (G) =
1

2
(Dout(G) + Din(G) −A(G) −A(G)T ).

Moreover, P (G) is the graph Laplacian of the mirror graph Ĝ, that is, P (G) = L(Ĝ) = 1
2

(
L(G) +

L(G̃)
)
.

3



Proof. For x ∈ R
n, we compute

xT P (G)x =
1

2
xT (Dout + Din −A−AT )x

=
1

2

( n∑

i,j=1

aijx
2
i +

n∑

i,j=1

aijx
2
j − 2

n∑

i,j=1

aijxixj

)

=
1

2

( n∑

i,j=1

aij(x
2
i + x2

j − 2xixj)
)

=
1

2

n∑

i,j=1

aij(xj − xi)
2 = ΦG(x).

Clearly P is symmetric. Since ΦG(x) ≥ 0 for all x ∈ R
n, we deduce P (G) is positive semidefinite.

Since

(D(Ĝ))ii =
n∑

j=1

âij =
n∑

j=1

1

2
(aij + aji),

we have D(Ĝ) = 1
2(Dout(G) + Din(G)). Hence,

L(Ĝ) = D(Ĝ) −A(Ĝ)

=
1

2
(Dout(G) + Din(G)) −

1

2
(A(G) + A(G)T ) = P (G).

The last inequality follows from the definitions of reverse and mirror graphs.

Remark 2.3. Note that in general, P (G) 6= L(G). However, if the digraph G is balanced, then
Dout(G) = Din(G), and therefore,

ΦG(x) =
1

2
xT (Dout(G) + Din(G))x −

1

2
xT (A(G) + A(G)T )x

= xT Dout(G)x − xTAx = xT L(G)x.

This is the result usually presented in the literature on undirected graphs. •

2.2 Averaging plus connectivity achieves consensus

To each node i ∈ U of a digraph G, we associate a state xi ∈ R, that obeys a first-order dynamics
of the form

ẋi = ui, i ∈ {1, . . . , n}.

We say that the nodes of a network have reached a consensus if xi = xj for all i, j ∈ {1, . . . , n}.
Our objective is to design control laws u that guarantee that consensus is achieved starting from
any initial condition, while ui depends only on the state of the node i and of its neighbors in G, for
i ∈ {1, . . . , n}. In other words, the closed-loop system asymptotically achieves consensus if, for any
x0 ∈ R

n, one has that x(t) → {α(1, . . . , 1) | α ∈ R} when t → +∞. If the value α is the average of
the initial state of the n nodes, then we say the nodes have reached average-consensus.

We refer to the following linear control law, often used in the literature on consensus (e.g.,
see [7, 10, 16]), as the averaging protocol :

ui =

n∑

j=1

aij(xj − xi). (2)
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With this control law, the closed-loop system is

ẋ(t) = −L(G)x(t). (3)

Next, we consider a family of digraphs {G1, . . . ,Gm} with the same vertex set {1, . . . , n}. A
switching signal is a map σ : R+ × R

n → {1, . . . , m}. Given these objects, we can define the
following switched dynamical system

ẋ(t) = −L(Gk)x(t),

k = σ(t, x(t)).
(4)

Note that the notion of solution for this system might not be well-defined for arbitrary switching
signals. The properties of the linear system (3) and the system (4) under time-dependent switching
signals have been investigated in [2, 5, 8, 23]. Here, we review some of these properties in the
following two statements.

Theorem 2.4 (Averaging over a digraph). Let G be a digraph. The following statements hold:

(i) System (3) asymptotically achieves consensus if and only if G has a globally reachable node;

(ii) If G is strongly connected, then system (3) asymptotically achieves average-consensus if and
only if G is balanced.

Statement (i) is proved in [23, Section 2]. Statement (ii) is proved in [2, Section VII].

Theorem 2.5 (Averaging over switching digraphs). Let {G1, . . . ,Gm} be a family of digraphs with
the same vertex set {1, . . . , n}, and let σ : R+ → {1, . . . , m} be a piecewise constant function. The
following statements hold:

(i) System (4) asymptotically achieves consensus if there exist infinitely many consecutive uni-
formly bounded time intervals such that the union of the switching graphs across each interval
has a globally reachable node;

(ii) If each Gi, i ∈ {1, . . . , m}, is strongly connected and balanced, then for any arbitrary piece-
wise constant function σ, the system (4) globally asymptotically solves the average-consensus
problem.

Statement (i) is proved in [5, Section III B]. Statement (ii) is proved in [2, Section IX].

2.3 Averaging protocol over a fixed acyclic digraph

Here we characterize the convergence properties of the averaging protocol in equation (3) under
different connectivity properties than the ones stated in Theorem 2.4, namely assuming that the
given digraph is acyclic.

We start by reviewing some basic properties of acyclic digraphs. Given an acyclic digraph G,
every vertex of in-degree 0 is named source, and every vertex of out-degree 0 is named sink. Every
acyclic digraph has at least one source and at least one sink. (Recall that sources and sinks can be
identified by following any directed path on the digraph.) Given an acyclic digraph G, we associate
a nonnegative number to each vertex, called depth, in the following way. First, we define the depth
of the sinks of G to be 0. Next, we consider the acyclic digraph that results from erasing the 0-depth
vertices from G and the in-edges towards them; the depth of the sinks of this new acyclic digraph
are defined to be 1. The higher depth vertices are defined recursively. This process is well-posed as
any acyclic digraph has at least one sink. The depth of the digraph is the maximum depth of its
vertices. For n, d ∈ N, let Sn,d be the set of acyclic digraphs with vertex set {1, . . . , n} and depth d.

Next, it is convenient to relabel the n vertices of the acyclic digraph G with depth d in the
following way: (1) label the sinks from 1 to n0, where n0 is the number of sinks; (2) label the
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vertices of depth k from
∑k−1

j=0 nj + 1 to
∑k−1

j=0 nj + nk, where nk is the number of vertices of depth
k, for k ∈ {1, . . . , d}. Note that vertices with the same depth may be labeled in arbitrary order.
With this labeling, the adjacency matrix A(G) is lower-diagonal with vanishing diagonal entries,
and the Laplacian L(G) takes the form

L(G) =




0 0 . . . 0

−a21
∑1

j=1 a2j . . . 0

. . . . . . . . . . . .

−an1 −an2 . . .
∑n−1

j=1 anj


 ,

or, alternatively,

L(G) =

[
0n0×n0 0n0×(n−n0)

L21 L22

]
, (5)

where 0k×h is the k × h matrix with vanishing entries, L21 ∈ R
(n−n0)×n0 and L22 ∈ R

n−n0×n−n0 .
Clearly, all eigenvalues of L are non-negative and the zero eigenvalues are simple, as their corre-
sponding Jordan blocks are 1 × 1 matrices.

Proposition 2.6 (Averaging over an acyclic digraph). Let G be an acyclic digraph of order n with
n0 sinks, assume its vertices are labeled according to their depth, and consider the dynamical system
ẋ(t) = −L(G)x(t) defined in (3). The following statements hold:

(i) The equilibrium set of (3) is the vector subspace

ker L(G) = {(xs, xe) ∈ R
n0 × R

n−n0 | xe = −L−1
22 L21xs}.

(ii) Each trajectory x : R+ → R
n of (3) exponentially converges to the equilibrium x∗ defined

recursively by

x∗
i =





xi(0), i ∈ {1, . . . , n0},∑i−1
j=1 aijx

∗
j∑i−1

j=1 aij

, i ∈ {n0 + 1, . . . , n}.

(iii) If G has unit depth, then the disagreement function ΦG is monotonically decreasing along any
trajectory of (3).

Proof. Statement (i) is obvious. Statement (ii) follows from the fact that −L22 is Hurwitz and from
the equilibrium equality

0 =

i−1∑

j=1

aij(x
∗
j − x∗

i ) =

i−1∑

j=1

aijx
∗
j −

( i−1∑

j=1

aij

)
x∗

i .

Regarding statement (iii), when the depth of G is 1, the adjacency matrix and the out-degree matrix
are equal to, respectively,

[
0n0×n0 0n0×(n−n0)

−L21 0(n−n0)×(n−n0)

]
,

[
0n0×n0 0n0×(n−n0)

0(n−n0)×n0
L22

]
,

where L21 and L22 are defined in (5). Therefore, we compute

L(G̃) =

[
L̃11 LT

21

0(n−n0)×n0
0(n−n0)×(n−n0)

]
,

where L̃11 ∈ R
n0×n0 . According to Proposition 2.2, we have

P (G) =
1

2

(
L(G) + L(G̃)

)
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The evolution of ΦG along a trajectory of x : R+ → R
n of (3) is given by

d

dt

(
ΦG(x(t))

)
= −x(t)T (L(G)T P (G) + P (G)L(G))x(t)

= −x(t)T L(G)T L(G)x(t) − x(t)T L(G)T L(G̃)x(t)

= −x(t)T L(G)T L(G)x(t) ≤ 0,

where in the last equality we have used the fact that L(G)T L(G̃) = L(G̃)T L(G) = 0n×n. Note that
ΦG is strictly decreasing unless x(t) ∈ kerL(G), i.e., the trajectory reaches an equilibrium.

Remarks 2.7. (i) If the digraph has a single sink, then the convergence statement in part (ii) of
Proposition 2.6 is equivalent to part (i) of Theorem 2.4.

(ii) The block decomposition of L(G̃) holds only for digraphs with depth 1. Indeed, statement (iii)
is not true for digraphs with depth larger than 1. The digraph in Figure 1 is a counterexample.
•

1 2

6

3

4 5

Figure 1: For this digraph of depth 2, the Lie derivative of the disagreement function (1) along the
averaging flow (3) is indefinite.

2.4 Averaging protocol over switching acyclic digraphs

Given a family of digraphs Γ = {G1, . . . ,Gm} with vertex set {1, . . . , n}, the minimal disagreement
function ΦΓ : R

n → R is defined by

ΦΓ(x) = min
k∈{1,...,m}

ΦGk
(x). (6)

Let I(x) = argmin{ΦGk
(x) | k ∈ {1, . . . , m}}, we consider state-dependent switching signals σ :

R
n → {1, . . . , m} with the property that σ(x) ∈ I(x), that is, at each x ∈ R

n, σ(x) corresponds to
the index of a graph with minimal disagreement. Clearly, for any such σ, one has ΦΓ(x) = ΦGσ(x)

(x).
Before giving our result, we first point out a helpful fact.

Lemma 2.8. Let Γ = {G1, . . . ,Gm} ⊂ Sn,1. If ∪k∈{1,...,m} Gk ∈ Sn,1, then for any i, j ∈ {1, . . . , m},
we have

L(Gi)
T L(G̃j) = 0n×n.

Proof. Let G = ∪k∈{1,...,m} Gk. Since G ∈ Sn,1, so we have, by proper ordering of the nodes,

L(G) =

[
0n0×n0 0n0×(n−n0)

L21 L22

]
, L(G̃) =

[
L̃11 LT

21

0(n−n0)×n0
0(n−n0)×(n−n0)

]
.

For any i ∈ {1, . . . , m}, Gi is a subgraph of G, so that L(Gi) and L(G̃i) share the same block
decompositions as stated in the last equation. Hence, the statement follows immediately.
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Proposition 2.9 (Averaging over acyclic digraphs). Let Γ = {G1, . . . ,Gm} ⊂ Sn,1, and assume that
∪k∈{1,...,m} Gk ∈ Sn,1 and that σ : R

n → {1, . . . , m} satisfies σ(x) ∈ I(x). Consider the discontinuous
dynamical system

ẋ(t) = Y (x(t)) = −L(Gk)x(t), for k = σ(x(t)), (7)

whose solutions are understood in the Filippov sense. The following statements hold:

(i) The point x∗ ∈ R
n is an equilibrium for (7) if and only if for each i ∈ I(x∗), there exists

scalars λi ≥ 0 and
∑

i∈I(x∗) λi = 1, such that

x∗ ∈ ker
( ∑

i∈I(x∗)

λiL(Gi)
)
. (8)

In particular, if I(x∗) contains only one element k∗ ∈ {1, . . . , m}, then (8) can be simplified
to

x∗ ∈ ker L(Gk∗). (9)

(ii) Each trajectory x : R+ → R
n of (7) converges to the set of equilibria.

(iii) The minimum disagreement function ΦΓ is monotonically non-increasing along any trajectory
x : R+ → R

n of (7).

Proof. We investigate first smoothness of ΦΓ. Because −ΦΓ is the maximum of the smooth functions
−ΦGk

, by Proposition A.3, we know that ΦΓ is locally Lipschitz and has generalized gradient

∂ΦΓ(x) = co{2P (Gi)x | i ∈ I(x)}.

Let a ∈ L̃Y ΦΓ(x), then by definition, there exists ω = −
∑

i∈I(x) λiL(Gi)x, where, for each i ∈

I(x), λi ≥ 0 and
∑

i∈I(x) λi = 1, such that a = ωT ζ for all ζ ∈ ∂ΦΓ(x). In particular, for
ζ =

∑
i∈I(x) 2λiP (Gi)x ∈ ∂ΦΓ(x), we have

a =
(
−
∑

i∈I(x)

λiL(Gi)x
)T( ∑

i∈I(x)

2λiP (Gi)x
)

= −xT
( ∑

i∈I(x)

λiL(Gi)
)T( ∑

i∈I(x)

λi(L(Gi) + L(G̃i))
)
x

= −xT
( ∑

i∈I(x)

λiL(Gi)
)T( ∑

i∈I(x)

λiL(Gi)
)
x − xT

( ∑

i∈I(x)

λiL(Gi)
T
)( ∑

i∈I(x)

λiL(G̃i)
)
x

= −xT
( ∑

i∈I(x)

λiL(Gi)
)T( ∑

i∈I(x)

λiL(Gi)
)
x ≤ 0,

where in the last equality we have used Lemma 2.8. Moreover,

a = 0 ⇐⇒ x ∈ ker
( ∑

i∈I(x)

λiL(Gi)
)
.

In particular, if x is not at any switching surface, then I(x) is a set with only one element k ∈
{1, . . . , m} and ∂ΦΓ(x) = 2P (Gk)x. Therefore, L̃Y ΦΓ(x) = 0 if and only if x ∈ ker L(Gk). Therefore,
we conclude that for x ∈ R

n and a ∈ L̃Y ΦΓ(x), we have a ≤ 0, i.e., max L̃Y ΦΓ(x) ≤ 0 and
statement (i) is true. Resorting to the LaSalle Invariance Principle (Theorem B.2), we deduce that
any trajectory x : R+ → R

n of (7) converges to the set of equilibria as stated in statement (i) and
statement (iii) is clear.
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Remarks 2.10. • Statement (ii) in this theorem is weaker than statement (ii) in previous one
in three ways: first, we are not able to characterize the limit point as a function of the initial
state. Second, we require the depth 1 assumption, which is sufficient to ensure convergence,
but possibly not necessary. Third, we establish only convergence to a set, rather than an
individual point. It remains an open question to obtain necessary and sufficient conditions for
convergence to a point.

• Although the statement (ii) is obtained only for digraphs of unit depth, this class of graphs is
of interest in the forthcoming sections. •

3 Discrete coverage control

In this section, we first review the multi-center optimization problem and the corresponding coverage
control algorithm proposed in [18]. We then study the multi-center optimization problem in discrete
space and derive a discrete coverage control law. This leads to a geometric object called the discrete
Voronoi graph. Finally, we show that the discrete coverage control law is an averaging algorithm
over a certain set of acyclic digraphs. Discrete locational optimization problems are discussed in
[24, 25, 26].

We will consider motion coordination problems for a group of robots described by first order
integrators. In other words, we assume that n robotic agents are placed at locations p1, . . . , pn ∈ R

2

and that they move according to

ṗi = ui, i ∈ {1, . . . , n}. (10)

We denote by P the vector of positions (p1, . . . , pn) ∈ (R2)n. Additionally, we define

Scoinc = {(p1, . . . , pn) ∈ (R2)n | pi = pj for some i 6= j},

and, for P 6∈ Scoinc, we let {Vi(P )}i∈{1,...,n} denote the Voronoi partition generated by P , we illustrate
this notion in Figure 2 and refer to [24] for a comprehensive treatment on Voronoi partitions.

Figure 2: The Voronoi partition of a rectangle in the plane. We depict the generators p1, . . . , pn

elevated from the plane for intuition’s sake.

3.1 Continuous and discrete multi-center functions

In this section we present a class of locational optimization problems in both continuous and dis-
crete settings. It would be possible to provide a unified treatment using generalized functions and
distributions, but we avoid it here for concreteness’ sake.

Let Q be a convex polygon in R
2 including its interior and let φ : R

2 → R+ be a bounded
and measurable function whose support is Q. Analogously, let {q1, . . . , qN} ⊂ R

2 be a pointset
and {φ1, . . . , φN} be nonnegative weights associated to them. Given a non-increasing function
f : R+ → R, we consider the continuous and discrete multi-center functions H : (R2)n → R and

9



Hdscrt : (R2)n → R defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq,

Hdscrt(P ) =
N∑

j=1

max
i∈{1,...,n}

φjf(‖qj − pi‖).

Now we define

Sequid = {(p1, . . . , pn) ∈ (R2)n | ‖q − pi‖ = ‖q − pk‖ = d(q)

for some q ∈ {q1, . . . , qN} and for some i 6= k},

where d(q) = minj∈{1,...,n} ‖q − pj‖. In other words, if P 6∈ Sequid, then no point qj is equidistant
to two or more nearest robots. Note that Sequid is a set of measure zero because it is the union of
the solutions of a finite number of algebraic equations. Using Voronoi partitions, for P 6∈ Scoinc, we
may write

H(P ) =
n∑

i=1

∫

Vi(P )
f(‖q − pi‖)φ(q)dq,

Hdscrt(P ) =
n∑

i=1

∑

qj∈Vi(P )

φj

card(qj , P )
f(‖qj − pi‖)

=
n∑

i=1

(
∑

qj∈
◦
V i(P )

φjf(‖qj − pi‖) +
∑

qj∈∂Vi(P )

φj

card(qj , P )
f(‖qj − pi‖)

)
,

where card : R
2 × (R2)n → {1, . . . , n} denotes the number of indices k for which ‖qj − pk‖ =

mini∈{1,...,n} ‖qj − pi‖. It is easy to see that card is distributed over the Voronoi graph and if qj is
a point in the interior of Vi(P ), then card(qj , P ) = 1. For P 6∈ Scoinc ∪Sequid, we have

Hdscrt(P ) =
n∑

i=1

∑

qj∈
◦
V i(P )

φjf(‖qj − pi‖).

Remark 3.1. The function f plays the role of a performance function. If {p1, . . . , pn} are the
locations of n sensors, and if events take place inside the environment Q with likelihood φ, then
f(‖q − pi‖) is the quality of service provided by sensor i. It will therefore be of interest to find
local maxima for H and Hdscrt. These types of optimal sensor placement spatial resource allocation
problems are the subject of a discipline called locational optimization [24, 25, 18]. •

The following result is discussed in[19] for the continuous multi-center function.

Proposition 3.2 (Partial derivatives of H). If f is locally Lipschitz, then H is locally Lipschitz on
Qn. Further, if f is differentiable, then H is differentiable on Qn\Scoinc, and, for each i ∈ {1, . . . , n},

∂H

∂pi
(P ) =

∫

Vi(P )

∂

∂pi
f(‖q − pi‖)φ(q)dq.

We obtain the corresponding properties of Hdscrt via nonsmooth analysis as the following propo-
sition.

10



Proposition 3.3 (Generalized gradient of Hdscrt). If f is locally Lipschitz, then Hdscrt is locally
Lipschitz on Qn. Further, if f is differentiable, then Hdscrt is regular on Qn and its generalized
gradient satisfies

∂Hdscrt(P ) =
N∑

j=1

φj co
{ ∂

∂P
f(‖qj − pk‖)

∣∣ k ∈ I(qj , P )
}

,

where I(qj , P ) is the set of indices k for which f(‖qj − pk‖) = maxi∈{1,...,n} f(‖qj − pi‖), and in
particular, if P 6∈ Scoinc ∪Sequid, then Hdscrt is differentiable at P , and for each i ∈ {1, . . . , n}

∂

∂pi
Hdscrt(P ) =

∑

qj∈
◦
V i(P )

φj
∂

∂pi
f(‖qj − pi‖).

Proof. We re-write here Hdscrt as

Hdscrt(P ) =
N∑

j=1

max
i∈{1,...,n}

φjf(‖qj − pi‖) =
N∑

j=1

φjFj(P ),

where, for each j ∈ {1, . . . , N},

Fj(P ) = max
i∈{1,...,n}

f(‖qj − pi‖).

We first investigate the smoothness of Fj(P ). By Proposition A.3, it is easy to see that if f is locally
Lipschitz, then Fj(P ) is locally Lipschitz on Qn, so is Hdscrt(P ).

Additionally, if f is differentiable, then Fj(P ) is regular on Qn, with generalized derivative

∂Fj(P ) = co
{ ∂

∂P
f(‖qj − pi‖)

∣∣ i ∈ I(qj , P )
}

,

where I(qj , P ) is the set of indexes k for which f(‖qj − pk‖) = Fj(P ). Since Hdscrt(P ) is a finite
sum of Fj(P ) with nonnegative weights φj , so Hdscrt(P ) is also regular (cf. Proposition A.2) on Qn,
with the regularity of Fj(P ), we obtain further the generalized gradient of Hdscrt(P ) as

∂Hdscrt(P ) =
N∑

j=1

φj co
{ ∂

∂P
f(‖qj − pk‖)

∣∣ k ∈ I(qj , P )
}

.

The expression for the partial derivative away from Scoinc ∪Sequid is easy to see.
Let ∂iHdscrt(P ) denote the ith block component of ∂Hdscrt(P ), the following result is a conse-

quence of Proposition 3.3.

Corollary 3.4. If f is differentiable, then for each i ∈ {1, . . . , n},

∂iHdscrt(P ) ⊂
∑

qj∈
◦
V i(P )

φj
∂

∂pi
f(‖qj − pi‖) +

∑

qj∈∂Vi(P )

φj co
{[0

0

]
,

∂

∂pi
f(‖qj − pi‖)

}
.

For particular choices of f , the multi-center functions and their partial derivatives may simplify.
For example, if f(x) = −x2, the partial derivative of the multi-center function H reads (for P 6∈
Scoinc)

∂H

∂pi
(P ) = 2MVi(P )(CVi(P ) − pi),
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where mass and the centroid of W ⊂ Q are

MW =

∫

W

φ(q) dq, CW =
1

MW

∫

W

q φ(q) dq.

Additionally, the critical points P ∗ of H have the property that p∗i = CVi(P ∗), for i ∈ {1, . . . , n}; these
are called centroidal Voronoi configurations. Analogously, if f(x) = −x2, the discrete multi-center
function Hdscrt reads

Hdscrt(P ) = −
N∑

j=1

max
i∈{1,...,n}

φj‖qj − pi‖
2,

and its generalized gradient is

∂Hdscrt(P ) =
N∑

j=1

φj co
{

2(qj − pk)
∂pk

∂P

∣∣ k ∈ I(qj , P )
}

. (11)

For each j ∈ {1, . . . , N}, assume the scalars λij , i ∈ I(qj , P ), satisfy

λij ≥ 0,
∑

i∈I(qj ,P )

λij = 1. (12)

Next, define (Mdscrt)Vi(P ) and (Cdscrt)Vi(P ), respectively, as

(Mdscrt)Vi(P ) =
∑

qj∈
◦
V i(P )

φj +
∑

qj∈∂Vi(P )

λijφj =
∑

qj∈Vi(P )

λijφj ,

(Cdscrt)Vi(P ) =





pi, if (Mdscrt)Vi(P ) = 0,
1

(Mdscrt)Vi(P )

( ∑

qj∈Vi(P )

λijφjqj

)
, otherwise.

Lemma 3.5. Given f(x) = −x2, P ∗ is a critical point of ∂Hdscrt, i.e., 0 ∈ ∂Hdscrt(P
∗), if and

only if for any j ∈ {1, . . . , N}, there exist λij as in (12), such that p∗i = (Cdscrt)Vi(P ∗), for each
i ∈ {1, . . . , n}.

Proof. Given scalar satisfying (12), define

w =
N∑

j=1

φj

∑

k∈I(qj ,P )

2λkj(qj − p∗k)
∂pk

∂P
,

then it is clear that w ∈ ∂Hdscrt(P
∗). Let wi denotes the ith component of w, since

wi = 2
∑

qj∈Vi(P ∗)

λijφj(qj − p∗i ) = 2
∑

qj∈Vi(P ∗)

λijφj(qj − (Cdscrt)Vi(P ∗)) = 0,

so w = 0 and 0 ∈ ∂Hdscrt(P
∗).

On the other hand, if P ∗ is a critical point, then there exists scalars λij satisfying (12), such
that

w =
N∑

j=1

φj

∑

k∈I(qj ,P )

2λkj(qj − p∗k)
∂pk

∂P
= 0,

which implies, for each i ∈ {1, . . . , n}

wi = 2
∑

qj∈Vi(P ∗)

λijφj(qj − p∗i ) = 0,

Solve this linear equation, we obtain

p∗i = (Cdscrt)Vi(P ∗), i ∈ {1, . . . , n}.
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3.2 Continuous and discrete coverage control

Based on the expressions obtained in the previous subsection, it is possible to design motion coor-
dination algorithms for the robots p1, . . . , pn. We call continuous and discrete coverage control the
problem maximizing the multi-center functions H and Hdscrt, respectively. The continuous prob-
lem is studied in [18]. We simply impose that the locations p1, . . . , pn follow a gradient ascent law
defined over the set Qn \ Scoinc. Formally, we set

ui = kprop
∂H

∂pi
(P ), (13)

where kprop is a positive gain. Note that this law is distributed in the sense that each robot only
needs information about its Voronoi cell in order to compute its control.

For discrete coverage control, we adopt the following discontinuous control law, for each robot
i ∈ {1, . . . , n}

ui = kprop Xi(P ), (14)

where Xi : Qn → R
2 is defined as

Xi(P ) =
∑

qj∈Vi(P )

φj

card(qj , P )

∂

∂pi
f(‖qj − pi‖).

Note that Xi is continuous at P ∈ Qn \ Scoinc ∪Sequid, and satisfies

Xi(P ) =
∂Hdscrt

∂pi
(P ).

Like control law (13), the discontinuous control law (14) is also distributed. Define the vector field
X = [X1, X2, . . . , Xn]T , we have

Ṗ = kprop X(P ). (15)

Since X(P ) is discontinuous at P ∈ Scoinc ∪Sequid, we understand the solution of this equation in
the Filippov sense following [27], and the existence of Filippov solution is guaranteed. We then
investigate the properties of the solution and analysis the convergence of (13) and (14).

Proposition 3.6 (Continuous coverage control; [18, 19]). For the closed-loop systems induced by
equation (13) starting at P0 ∈ Qn \ Scoinc, the agents location converges asymptotically to the set of
critical points of H.

Proposition 3.7 (Discrete coverage control). For the closed-loop systems induced by equation (14)
starting at P0 ∈ Qn \ Scoinc, the agents location converges asymptotically to the set of critical points
of Hdscrt.

Proof. Note that
K[kprop X](P ) = kprop∂Hdscrt(P ).

Given this property, the following proof is essentially the same as the proof of Proposition 2.9 in [28].
We refer the interested reader to [28] for technical details.

3.3 Discretizing continuous settings

In this section we discuss the relationship between the discretization of continuous locational opti-
mization problems and discrete locational optimization problems.

As before, let Q be a convex polygon in R
2 including its interior, and let φ : R

2 → R+ be a
bounded and measurable function whose support is Q. We shall consider a sequence of pointsets
{qk

1 , . . . , qk
Nk

}k∈N ⊂ R
2 and of nonnegative weights {φk

1, . . . , φ
k
Nk

}k∈N. Accordingly, we can define a
13



sequence of discrete multi-center functions Hk
dscrt, for k ∈ N. The sequence {qk

1 , . . . , qk
Nk

}k∈N ⊂ R
2

is dense1 in Q if, for all q ∈ Q,

lim
k→+∞

min{‖q − z‖ | z ∈ {qk
1 , . . . , qk

Nk
}} = 0.

Given a pointset q1, . . . , qN , let V (q1, . . . , qN ) denote the Voronoi partition it generates and
define the associated weights

φj =

∫

Vj(q1,...,qN )
φ(q)dq. (16)

Proposition 3.8 (Consistent discretization). Assume that f is continuous almost everywhere, that
the sequence {qk

1 , . . . , qk
Nk

}k∈N ⊂ R
2 is dense in Q, and that the sequence of weights are defined

according to (16). Then {Hk
dscrt}k∈N converges pointwise to H, that is, for all P ∈ Qn ,

lim
k→+∞

Hk
dscrt(P ) = H(P ).

Additionally, if f is continuously differentiable, then for P ∈ Qn \ Scoinc and each i ∈ {1, . . . , n},
any sequence xk ∈ ∂iH

k
dscrt(P ), k ∈ N, satisfies

lim
k→+∞

xk =
∂H

∂pi
(P ).

Proof. For k ∈ N, given the pointset {qk
1 , . . . , qk

Nk
}, we define the projection projk : Q → {qk

1 , . . . , qk
Nk

}
by

projk(q) = argmin{‖q − z‖ | z ∈ {qk
1 , . . . , qk

Nk
}}.

Because of the vanishing dispersion property, we know that, for all q ∈ Q,

lim
k→+∞

projk(q) = q. (17)

Therefore, we compute

Hk
dscrt(P ) =

Nk∑

j=1

max
i∈{1,...,n}

f(‖qk
j − pi‖)

∫

Vj(qk
1 ,...,qk

Nk
)
φ(q)dq

=

Nk∑

j=1

∫

Vj(qk
1 ,...,qk

Nk
)

max
i∈{1,...,n}

f(‖qk
j − pi‖)φ(q)dq

=

∫

Q

max
i∈{1,...,n}

f(‖projk(q) − pi‖)φ(q)dq.

Because f is continuous almost everywhere, we have

lim
k→+∞

Hk
dscrt(P )

= lim
k→+∞

∫

Q

max
i∈{1,...,n}

f(‖projNk
(q) − pi‖)φ(q)dq

=

∫

Q

max
i∈{1,...,n}

f(‖ lim
k→+∞

projNk
(q) − pi‖)φ(q)dq

=

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq = H(P ).

1This is equivalent to asking that the sequence has vanishing dispersion; the dispersion of a pointset {q1, . . . , qN}
in the compact set Q is max

q∈Q
min

z∈{q1,...,qN}
‖q − z‖.

14



Define

∂∗
i H

k
dscrt(P ) =

∑

qk
j ∈

◦
V i(P )

φj
∂

∂pi
f(‖qk

j − pi‖) +
∑

qk
j ∈∂Vi(P )

φj co
{[0

0

]
,

∂

∂pi
f(‖qk

j − pi‖)
}

.

By Corollary 3.4, if f is differentiable, then ∂iH
k
dscrt(P ) ⊂ ∂∗

i H
k
dscrt(P ). Suppose x∗

k ∈ ∂∗
i H

k
dscrt(P ),

then there exists scalars λij ∈ [0, 1], such that

x∗
k =

∑

qk
j ∈

◦
V i(P )

φj
∂

∂pi
f(‖qk

j − pi‖) +
∑

qk
j ∈∂Vi(P )

λijφj
∂

∂pi
f(‖qk

j − pi‖). (18)

Substitute (16) into (18), we obtain

x∗
k =

∑

qk
j ∈

◦
V i(P )

∫

Vj(qk
1 ,...,qk

N
)
φ(q)

∂

∂pi
f(‖qk

j − pi‖)dq

+
∑

qk
j ∈∂Vi(P )

∫

Vj(qk
1 ,...,qk

N
)
λijφ(q)

∂

∂pi
f(‖qk

j − pi‖)dq.

Since f is continuously differentiable, so for P ∈ Qn \ Scoinc, we have

lim
k→+∞

x∗
k =

∫
◦
V i(P )

φ(q)
∂

∂pi
f(‖q − pi‖)dq +

[
0

0

]
=

∂H

∂pi
(P ).

Hence,

lim
k→+∞

xk =
∂H

∂pi
(P ).

3.4 The relationship between discrete coverage and averaging over switching

acyclic digraphs

As above, let Q be a convex polygon, let {p1, . . . , pn} ⊂ Q be the position of n robots, let
{q1, . . . , qN} ⊂ Q be N fixed points in Q with corresponding nonnegative weights {φ1, . . . , φN},
and let I(qj , P ) be the set of indices k for which ‖qj − pk‖ = mini∈{1,...,n} ‖qj − pi‖. We begin by
defining a useful digraph and a useful set of digraphs.

A discrete Voronoi graph Gdscrt-Vor is a digraph with (n + N) vertices {p1, . . . , pn, q1, . . . , qN},
with N directed edges

{(pi, qj)| for each j ∈ {1, . . . , N}, pick one and only one i ∈ I(qj , P )},

and with corresponding edge weights φj , for all j ∈ {1, . . . , N}. We illustrate this graph in Figure 3.
With our definition, it is possible for one vertex set to generate multiple discrete Voronoi graphs.
We will denote the nodes of Gdscrt-Vor by Z = (z1, . . . , zn+N ) ∈ (R2)n+N , the weights by aαβ , for
α, β ∈ {1, . . . , n + N}, with the understanding that:

zα =

{
pα, if α ∈ {1, . . . , n},

qα−n, otherwise,

and that the only non-vanishing weights are aαβ = φj when β = n + j, for j ∈ {1, . . . , N}, and
when α ∈ {1, . . . , n} corresponds to the robot pα closest to qj and (pα, qj) is a directed edge of the
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Figure 3: The discrete Voronoi graph over 3 robots and 6× 9 grid points. This illustration is to be
compared with the Voronoi partition illustrated in Figure 2. The edges have top/down direction.

graph Gdscrt-Vor. Note that Gdscrt-Vor depends upon Z. Since {q1, . . . , qN} ⊂ Q are fixed, when we
need to emphasize this dependence, we will simply denote it as Gdscrt-Vor(P ).

Let us now define a set of digraphs of which the discrete Voronoi graphs are examples. Let
F (N, n) be the set of functions from {1, . . . , N} to {1, . . . , n}. Roughly speaking, a function in
F (N, n) assigns to each point qj , j ∈ {1, . . . , N}, a robot pi, i ∈ {1, . . . , n}. Given h ∈ F (N, n), let
Gh be the digraph with (n + N) vertices {p1, . . . , pn, q1, . . . , qN}, with N directed edges

{(ph(j), qj)}j∈{1,...,N},

and corresponding edge weights φj , j ∈ {1, . . . , N}. With these notations, it holds that Gdscrt-Vor(P ) =
Gh∗(·,P ) with any function h∗ : {1, . . . , N} × Qn → {1, . . . , n} which satisfies

h∗(j, P ) ∈ argmin{‖qj − pi‖ | i ∈ {1, . . . , n}}.

Let us state a useful observation about these digraphs.

Lemma 3.9. The set of digraphs Gh, h ∈ F (N, n), is a set of acyclic digraphs with unit depth,
i.e., it is a subset of Sn+N,1 (see definition in Subsection 2.3). Moreover, ∪h∈F (N,n) Gh is an acyclic
digraph with unit depth, i.e., ∪h∈F (N,n) Gh ∈ Sn+N,1.

For h ∈ F (N, n), let us study appropriate disagreement functions for the digraph Gh. We define
the function ΦGh

: (R2)n+N → R by

ΦGh
(Z)|Z=(p1,...,pn,q1,...,qN ) =

1

2

n+N∑

α,β=1

aαβ‖zα − zβ‖
2

=
1

2

N∑

j=1

φj‖qj − ph(j)‖
2,

because the weights aαβ , α, β ∈ {1, . . . , n + N} of the digraph Gh all vanish except for ah(j),j = φj ,
j ∈ {1, . . . , N}.

We are now ready to state the main result of this section. The proof of the following theorem
is based on simple book-keeping and is therefore omitted.

Theorem 3.10 (Discrete coverage control and averaging). The following statements hold:

(i) The discrete multi-center function Hdscrt with f(x) = −x2, and the minimum disagreement
function over the set of digraphs Gh, h ∈ F (N, n), satisfy

−
1

2
Hdscrt(P ) =

1

2

N∑

j=1

min
i∈{1,...,n}

φj‖qj − pi‖
2

=
1

2

N∑

j=1

φj‖qj − ph∗(j)‖
2

= ΦGdscrt-Vor
(p1, . . . , pn, q1, . . . , qN )

= min
h∈F (N,n)

ΦGh
(p1, . . . , pn, q1, . . . , qN ).
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(ii) For P 6∈ Scoinc ∪Sequid, the discrete coverage control law for f(x) = −x2 and the averaging
protocol over the discrete Voronoi digraph satisfy, for i ∈ {1, . . . , n},

1

2

∂Hdscrt

∂pi
(P ) =

∑

qj∈Vi(P )

φj(qj − pi) =
n+N∑

β=1

aαβ(zβ − zα),

where zα and aαβ, α, β ∈ {1, . . . , n + N}, are nodes and weights of Gdscrt-Vor. Accordingly,
the discontinuous coverage control system (15), for f(x) = −x2, and the averaging system (7)
over the set of digraphs Gh, h ∈ F (N, n) satisfy, for i ∈ {1, . . . , n},

1

2
K[Xi](P ) = K[Yi](Z),

where Z = (p1, . . . , pn, q1, . . . , qN ), Xi and Yi are the ith 2-dimensional block component of X
and Y , respectively.

(iii) Any P ∗ ∈ Qn is an equilibrium of the discrete coverage control system with f(x) = −x2 if and
only if Z∗ = (p∗1, . . . , p

∗
n, q1, . . . , qN ) is an equilibrium of system (7) over the set of digraphs

Gh, h ∈ F (N, n), that is:

∀j ∈ {1, . . . , N}, ∃λij as in (12), such that p∗i = (Cdscrt)Vi(P ∗), ∀i ∈ {1, . . . , n},

⇐⇒ ∃µk ≥ 0 and
∑

k

µk = 1, such that Z∗ ∈ ker
(∑

k

µkL(Gk
dscrt-Vor(Z

∗))
)
,

where {Gk
dscrt-Vor(Z

∗)}k are all possible discrete Voronoi graphs generated by Z∗.

(iv) Given any initial position of robots P0 ∈ Qn, the evolution of the discrete coverage control
system (15) and the evolution of the averaging system (7) under the switching signal σ :
Qn → {Gh | h ∈ F (N, n)} defined by σ(P ) = Gdscrt-Vor(Z) are identical in the Filippov sense
and, therefore, the two systems will converge to the same set of equilibrium placement of robots,
as described in (iii).

3.5 Numerical simulations

To illustrate the performance of the discrete coverage law as stated in Proposition 3.7 and to
illustrate the accuracy of the discretization process, as analyzed in Proposition 3.8, we include some
simulation results. The algorithms are implemented in Matlab as a single centralized program.
As expected, the simulations for the discrete coverage law are computationally intensive with the
increase in the resolution of the grid. We illustrate the performance of the closed-loop systems in
Figures 4, 5, 6 and 7.

4 Conclusions

We have studied averaging protocols over fixed and controlled-switching acyclic digraphs, and char-
acterized their asymptotic convergence properties. We have also discussed continuous and discrete
multi-center locational optimization functions, and distributed control laws that optimize them.
The main result of the paper shows how these two sets of problems are intimately related: discrete
coverage control laws are indeed averaging protocols over acyclic digraphs. As a consequence of our
analysis, it may be argued that the coverage control problem and the consensus problem are both
special cases of a general class of distributed optimization problems.
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Figure 4: Continuous coverage law for 32 agents on a convex polygonal environment, with density
function φ = exp(5.(−x2 − y2)) centered about the gray point in the figure. The control gain
in (13) is kprop = 1 for all the vehicles. The left (respectively, right) figure illustrates the initial
(respectively, final) locations and Voronoi partition. The central figure illustrates the gradient
descent flow. Figure taken from [18].

Figure 5: Simulation of discrete coverage law with 159 grid points.

Figure 6: Simulation of discrete coverage law with 622 grid points.

Figure 7: Simulation of discrete coverage law with 2465 grid points.
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A Basic ideas on nonsmooth analysis

In this appendix we review some properties in basic calculus of generalized gradient of functions [29].

Proposition A.1 (Scalar multiples). If f : R
M → R is locally Lipschitz at x ∈ R

M , then, for any
scalar s, sf is locally Lipschitz at x and

∂(sf)(x) = s∂f(x).

Proposition A.2 (Finite sums). If fi : R
M → R, i ∈ {1, . . . , m}, are locally Lipschitz at x ∈ R

M ,
then, for any scalars {s1, . . . , sm},

∑m
i=1 sifi is locally Lipschitz and

∂
( m∑

i=1

sifi

)
(x) ⊂

m∑

i=1

si∂fi(x),

where equality holds if each fi is regular at x and each si is nonnegative.
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Proposition A.3. Let fk : R
M → R, k ∈ {1, . . . , m} be locally Lipschitz functions at x ∈ R

M and
let f(x′) = max{fk(x

′) | k ∈ {1, . . . , m}}. Then,

(i) f is locally Lipschitz at x,

(ii) if I(x′) denotes the set of indexes k for which fk(x
′) = f(x′), we have

∂f(x) ⊂ co{∂fi(x) | i ∈ I(x)} ,

and if fi, i ∈ I(x), is regular at x, then equality holds and f is regular at x.

B Stability analysis via nonsmooth Lyapunov functions

Throughout the paper, we define the solutions of differential equations with discontinuous right-
hand sides in terms of differential inclusions [27]. Let F : R

N → 2R
N

be a set-valued map. Consider
the differential inclusion

ẋ ∈ F (x) . (19)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely continuous function
x : [t0, t1] → R

N such that ẋ(t) ∈ F (x(t)) for almost all t ∈ [t0, t1]. Given x0 ∈ R
N , the existence of

at least a solution with initial condition x0 is guaranteed by the following lemma.

Lemma B.1. Let the mapping F be upper semicontinuous with nonempty, compact and convex
values. Then, given x0 ∈ R

N , there exists a local solution of (19) with initial condition x0.

Now, consider the differential equation

ẋ(t) = X(x(t)) , (20)

where X : R
N → R

N is measurable and essentially locally bounded. Here, we understand the
solution of this equation in the Filippov sense, which we define in the following. For each x ∈ R

N ,
consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(BN (x, δ) \ S)} ,

where µ denotes the usual Lebesgue measure in R
N . Alternatively, one can show [30] that there

exists a set SX of measure zero such that

K[X](x) = co{ lim
i→+∞

X(xi) | xi → x , xi 6∈ S ∪ SX} ,

where S is any set of measure zero. A Filippov solution of (20) on an interval [t0, t1] ⊂ R is
defined as a solution of the differential inclusion ẋ ∈ K[X](x). Since the multivalued mapping

K[X] : R
N → 2R

N
is upper semicontinuous with nonempty, compact, convex values and locally

bounded (cf. [27]), the existence of Filippov solutions of (20) is guaranteed by Lemma B.1.
Given a locally Lipschitz function f : R

N → R, the set-valued Lie derivative of f with respect to
X at x is defined as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a , ∀ζ ∈ ∂f(x)} .

For each x ∈ R
N , L̃Xf(x) is a closed and bounded interval in R, possibly empty. If f is continuously

differentiable at x, then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in addition, X is continuous at x,
then L̃Xf(x) corresponds to the singleton {LXf(x)}, the usual Lie derivative of f in the direction
of X at x.

The following result is a generalization of LaSalle Invariance Principle for differential equations
of the form (20) with nonsmooth Lyapunov functions. The formulation is taken from [31], and
slightly generalizes the one presented in [32].
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Theorem B.2 (LaSalle principle). Let f : R
N → R be a locally Lipschitz and regular function.

Let x0 ∈ R
N and let f−1(≤ f(x0), x0) be the connected component of {x ∈ R

N | f(x) ≤ f(x0)}
containing x0. Assume the set f−1(≤ f(x0), x0) is bounded and assume either max L̃Xf(x) ≤ 0 or
L̃Xf(x) = ∅ for all x ∈ f−1(≤ f(x0), x0). Then f−1(≤ f(x0), x0) is strongly invariant for (20). Let

ZX,f = {x ∈ R
N | 0 ∈ L̃Xf(x)} .

Then, any solution x : [t0, +∞) → R
N of (20) starting from x0 converges to the largest weakly

invariant set M contained in ZX,f∩f−1(≤ f(x0), x0). Furthermore, if the set M is a finite collection
of points, then the limit of all solutions starting at x0 exists and equals one of them.
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